Agua Harmonics

Clean.Simple.Energy.

Control Co-Design of the AquaHarmonics Wave Energy Device

AquaHarmonics

Max Ginsburg

B.S. Electrical Engineering, OSU

Alex Hagmüller, PE

B.S. Mechanical Engineering, OSU

AguaHarmonics

Clean.Simple.Energy.

AquaHarmonics 1:20th scale device design methodology for the US DOE Wave Energy Prize:

- Winning device based on highest HPQ: HPQ = ACE $[I_{MF} \cdot I_{WC} \cdot I_{AP_{P2A}} \cdot I_{ES} \cdot I_{RS} \cdot I_{AC}]$
- First look at ACE=Average Climate Capture Width Per Characteristic Capital Expenditure
- The ACE Metric is Comprised of Two Components
 - Average Climate Capture Width (ACCW) = a measure of the effectiveness of a WEC at absorbing power from the incident wave energy field.
 - Characteristic Capital Expenditure (CCE) = a measure of the capital expenditure in commercial production of the load bearing device structure.

ACCW = (P average absorbed (kW) / P resource (kW/m))

 $CCE = RST * A_{surf} * \rho * MMC$

where:

RST = representative structural thickness [m]

 A_{surf} = total structural surface area [m²]

 ρ = material density [kg/m³]

MMC = manufactured material cost [US\$/kg]

Figure 5. Visual representation of the RST concept for a component originally composed of plate and beams. All the material from the plate and beam structure (left) are distributed equally as a simple plate over the simplified surface area (right).

AguaHarmonics

Clean.Simple.Energy.

AquaHarmonics 1:20th scale device design methodology for the US DOE Wave

Energy Prize:

- Winning device based on highest HPQ: HPQ = ACE $[I_{MF} \cdot I_{WC} \cdot I_{AP_{P2A}} \cdot I_{ES} \cdot I_{RS} \cdot I_{AC}]$
- By Inspection:
 - Greater average absorbed power yields larger ACE
 - More efficient devices, devices capturing energy in multiple DOF
 - Lower characteristic capital expenditure yields larger ACE
 - Smaller devices
 - Lower loads/less material

ACE =

ACCW = (P average absorbed (kW) / P resource (kW/m))

$$CCE = RST * A_{surf} * \rho * MMC$$

where:

RST = representative structural thickness [m]

 A_{surf} = total structural surface area [m²]

 ρ = material density [kg/m³]

MMC = manufactured material cost [US\$/kg]

Table 3	MMC Values	Head to Evaluat	a CCE for Each	NEC in the Prize

Material	Low	Med	High
Steel - A36	\$2,250	\$3,000	\$4,500
Steel Reinforced Concrete	\$424	\$510	\$557
High-density Polyethylene (HDPE)	\$6,000	\$7,900	\$12,000
Coated Fabric	\$7,200	\$9,500	\$13,500
Aluminum - 5083	\$4,900	\$5,900	\$8,000
Fiberglass (E-Glass/Epoxy)	\$7,500	\$8,200	\$9,500
Filament Wound Fiberglass	\$4,630	\$5,510	\$6,620

<u> Acua Harmonics</u>

Clean.Simple.Energy.

AquaHarmonics 1:20th scale device design methodology for the US DOE Wave Energy Prize:

- The HPQ is Comprised of the following $HPQ = ACE \cdot [I_{MF} \cdot I_{WC} \cdot I_{AP_{P2A}} \cdot I_{ES} \cdot I_{RS} \cdot I_{AC}]$
 - Six hydrodynamic performance-related quantities will be determined through data processing for each device tested in the MASK Basin:
 - One that measures the area swept by the device in its motions;
 - One that examines the maximum loads on the device's mooring;
 - One that measures the fluctuations in the devices absorbed power;
 - One that counts impact events;
 - One that quantifies the device's absorbed power in realistic seas; and,
 - One that examines the amount of energy used by the device for controls.

here the performance impact factors are defined as follows:

- I_{MF}, based on the statistical peak of the mooring force, accounting for mooring loads intensity
- I_{WC}, the statistical peak of the mooring watch circle, accounting for station keeping ability
- I_{APP2A}, the ratio of statistical peak-to-average of absorbed power, accounting for variability of the absorbed power
- I_{ES}, the number of end-stop impact events, accounting for frequency and severity of mechanical end-stop impacts
- I_{RS}, the absorbed power in realistic seas
- I_{AC}, accounting for the adaptive control effort.

Table 4. Impact Factors Used in the HPQ Weighting of ACE						
HPQ Impact Factor	1	2	3	4	5	
I_{MF}	0.92	0.96	1.0	1.04	1.08	
I_{WC}	0.96	0.98	1.0	1.02	1.04	
$I_{AP_{P2A}}$	0.92	0.96	1.0	1.04	1.08	
I_{ES}	0.92	0.96	1.0	1.04	1.08	
I_{RS}	0.90	0.95	1.0	1.05	1.1	
I_{AC}	0.92	0.94	0.96	0.98	1.0	

<u> Agua Harmonics</u>

Clean.Simple.Energy.

Design Decisions-Why a Point Absorber?

- We already had some prototypes for a point absorber
- Lots of literature available for point absorbers
 - Control
 - Hull types
 - Single body and multi body
- Appeared to be the most serviceable, potentially most simple topology for
 - Design
 - Installation
 - Manufacturability
 - Access to PTO
- Decided to proceed with point absorber for above reasons
- Has some drawbacks
 - Depending on mooring and PTO, may only extract power in 1 DOF (heave)
 - As a surface float, it will be in most energetic location in storms, on the ocean surface

AguaHarmonics

Clean.Simple.Energy.

AquaHarmonics 1:20th scale device design methodology for the US DOE Wave Energy Prize:

ACE Metric and HPQ Evaluation-Strategize to win!

- Assume that the ACE metric is a reasonable proxy for LCOE for device with low TRL
- Winning device must have highest ACE score, but HPQ is important as well
- HPQ factor can raise or lower the final score considerably-62% of ACE score at lowest and 144% of ACE score at highest
- Estimate HPQ performance based on design decisions
- Trade Offs exist within every unique design!

AcuaHarmonics

Clean.Simple.Energy.

Literature review for Hull shape

Hull Selection

- Reviewed existing literature for hull of device; criteria included
 - Absorption ability, bandwidth
 - Manufacturability
 - Robustness

Selection:

- Selected a cone bottom with a 30 degree deadrise angle
- Highest bandwidth reviewed in sea states to be tested
- Good information available on structural ability/characteristics

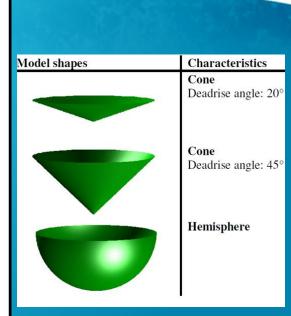
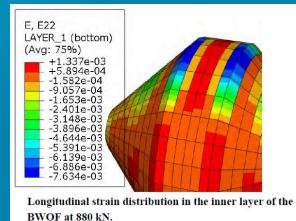



Figure 9-62 Lateral outdoor drop test from 4.8 meter; sequential images from the HSC measurements during impact of the BWOF.

Agua Harmonics

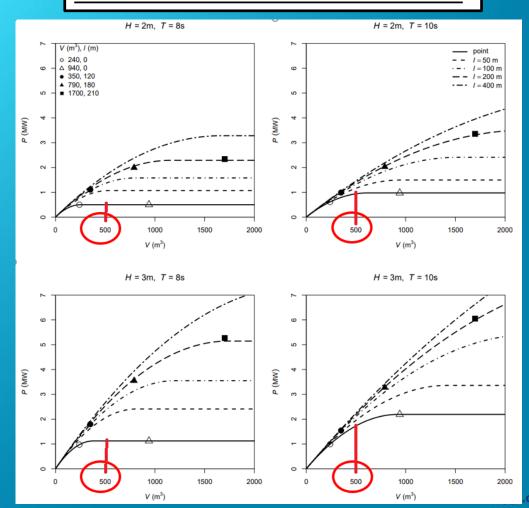
Clean.Simple.Energy.

<u>Literature review for Hull volume</u> <u>Hull Size/Volume Selection</u>

- Reviewed existing literature for maximum volume
 - First iteration started with ~900m^3 volume(full scale)
 - We want maximum power but only at maximum efficiency for high ACE score
 - Bigger devices make more power, but also have higher CCE (capital cost)
 - Based on ACE calculation, a very (infinitesimally) small would win WEP
 - Not really the point of the competition (but a fun thought!)

<u>Actua Harmonics</u>

Clean.Simple.Energy.


Hull Volume Selection:

Based on waves to be tested in WEP, peak efficiency for point absorber determined to be ~500 m^3(full scale) hull volume

WEP Waves

Wave Designation	Т _Р (s)	<i>H_S</i> (m)	Dir (deg)	s
IWS 1	7.31	2.34	10	none
IWS 2	9.86	2.64	0	none
IWS 3	11.52	5.36	-70	none
IWS 4	12.71	2.05	-10	none
IWS 5	15.23	5.84	0	none
IWS 6	16.50	3.25	0	none
LIWS 1	13.9	7.9	-30	3
LIWS 2	11.2	9.2	-70	7
RWS 1	14.38	1.52	-70	7
	7.18	2.16	0	10
RWS 2	14.83	1.59	-70	7
	8.65	1.30	-10	10

Power Vs. Volume in various waves

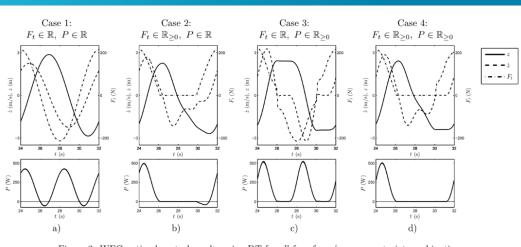
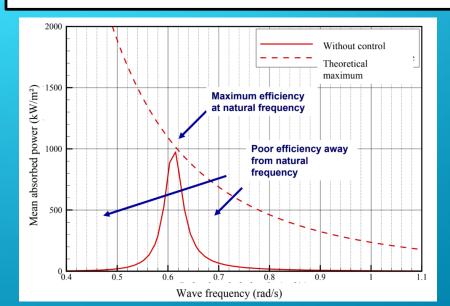
<u>Acua Harmonics</u>

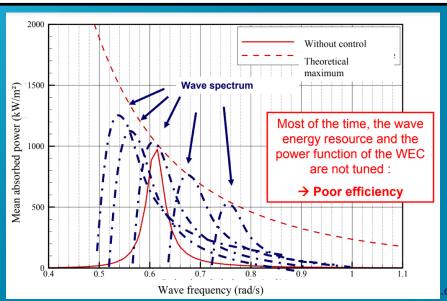
Clean.Simple.Energy.

Literature review for control

- Reviewed existing literature for control of a point absorber
 - Many types have been researched: Damping only, Complex Conjugate, Latching, De-clutching, MPC....
 - Appears that tension only PTO's can make nearly the same power as a tension/compression PTO.
 - Simplifies structure of device and PTO, use of tensile materials where they are strongest.
 - By eliminating end stops in PTO, device can make use of full height of waves, non-linearities are eliminated, and maximum displacement at resonance can be utilized.

- Case 1) No constraints on tether force $(F_t \in \mathbb{R})$ or power $(P \in \mathbb{R})$
- Case 2) Non-negative tether force $(F_t \in \mathbb{R}_{\geq 0})$, no power constraint $(P \in \mathbb{R})$
- Case 3) No constraints on tether force $(F_t \in \mathbb{R})$, non-negative power $(P \in \mathbb{R}_{>0})$
- Case 4) Non-negative tether force $(F_t \in \mathbb{R}_{\geq 0})$, non-negative power $(P \in \mathbb{R}_{\geq 0})$

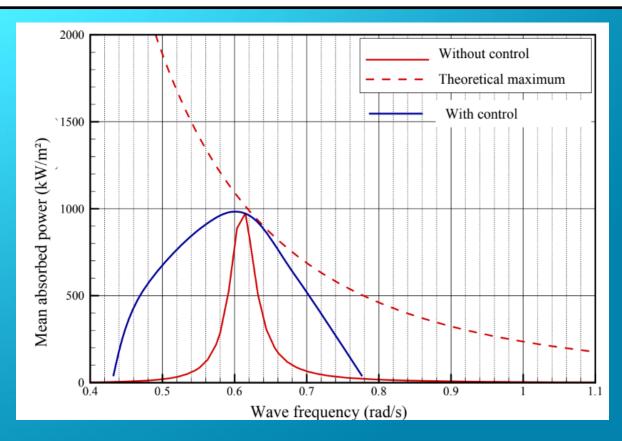




Figure 2: WEC optimal control results using DT for all four force/power constraint combinations.

Agua Harmonics Clean.Simple.Energy.

Literature review for control

- Reviewed existing literature for control of a point absorber
 - Started looking at latching and de-clutching control
 - Ended with a modified PI control (complex conjugate)
 - Since device is lightweight and small, it has a high resonant frequency
 - Reactive power must be added to make device resonant for maximum power extraction
 - In storm conditions, spring term (Ki) can be removed to de-tune device motion for lower mooring loads
 - By use of pre-load in the system, the device always remains in tension with no slack mooring conditions

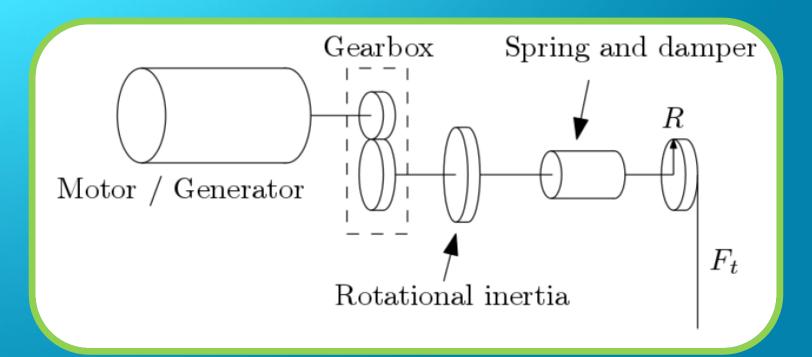


AcuaHarmonics

Clean.Simple.Energy.

Literature review for control

- Reviewed existing literature for control of a point absorber
 - Concept broadens operational bandwidth in range of sea states (greater power absorption, impacts ACE positively)
 - Control concept has high peak to average loads (impacts HPQ score negatively)



AcuaHarmonics

Clean.Simple.Energy.

Selected PTO Topology

- Reviewed existing literature for control of a point absorber
 - Winch-Like PTO, tension only
 - Mechanical spring pre-load
 - Mechanically simple/robust, well known components, good topology for linear to rotational conversion
 - Allows for no end stops in operational conditions (simply add more line to the drum)

<u>Agua Harmonics</u>

Clean.Simple.Energy.

- Revised HPQ estimate
 - Six hydrodynamic performance-related quantities will be determined through data processing for each device tested in the IHPQ = $ACE \cdot \left[I_{MF} \cdot I_{WC} \cdot I_{AP_{P2A}} \cdot I_{ES} \cdot I_{RS} \cdot I_{AC}\right]$
 - One that measures the area swept by the device in its motions;
 - Anticipated small motions except heave
 - One that examines the maximum loads on the device's mooring;
 - Anticipated high peak to average, but no snap loads or end stops
 - One that measures the fluctuations in the devices absorbed power;
 - One that counts impact events;
 - Anticipated no impact events
 - One that quantifies the device's absorbed power in realistic seas; and,
 - Difficult to quantify at the time
 - One that examines the amount of energy used by the device for controls.
 - In terms of control effort, very low effort to apply controls (ie no geometric changes, only software)

Table 4. Impact Factors Used in the HPQ Weighting of ACE						
HPQ Impact Factor	1	2	3	4	5	
I_{MF}	0.92	0.96	1.0	1.04	1.08	
I_{WC}	0.96	0.98	1.0	1.02	1.04	
$I_{AP_{P2A}}$	0.92	0.96	1.0	1.04	1.08	
I_{ES}	0.92	0.96	1.0	1.04	1.08	
I_{RS}	0.90	0.95	1.0	1.05	1.1	
I_{AC}	0.92	0.94	0.96	0.98	1.0	

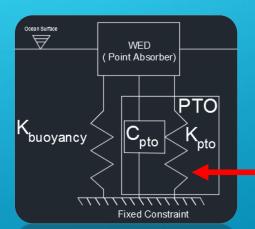
fppt.com

<u> Aqua Harmonics</u>

Clean.Simple.Energy.

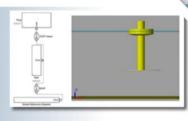
AquaHarmonics 1:20th scale device as tested in the Wave Energy Prize:

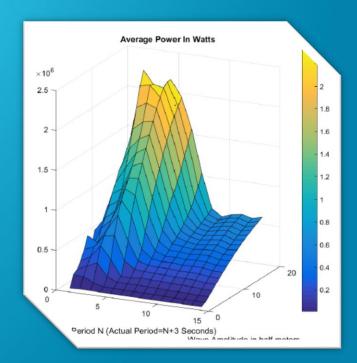
Final Device Topology


- Tension only Point Absorber, capture predominantly in heave
 - Trade capture in other DOF for simplicity in control and PTOs
 - Eliminate need for column loaded structures (ie, column loaded two body point absorber)
- Single body, Axi-symmetric cone-cylinder shaped hull
- ~500m^3 bounded volume
 - Aimed for maximum capture efficiency in WEP sea states
 - Control system should maximize power for selected size
- Winch-like direct drive power take off with mechanical spring energy storage
- PTO mooring line directly connected to seabed, 4 additional catenary mooring lines
- No end stop conditions in design states (only limited to line on PTO drum)
- Ability to de-tune device in storm conditions (minimize mooring line loads, device loads in energetic sea states)

<u>Acua Harmonics</u>

Clean.Simple.Energy.


AquaHarmonics 1:20th scale design approach:


- Only 5 weeks to design, build and manufacture the device before tank testing
- Numerical analysis using WEC-Sim gave insight into design for selection of components (overestimated velocities for given power)
- Planned for ability to change mechanical spring rates and gear ratios quickly and easily
- Planned for a disciplined empirical approach

$$w_0 = \sqrt{\frac{k_{equivelent}}{m + m_a}}$$

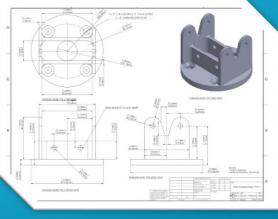
WEC-Sim
Wave Energy Converter
SIMulator

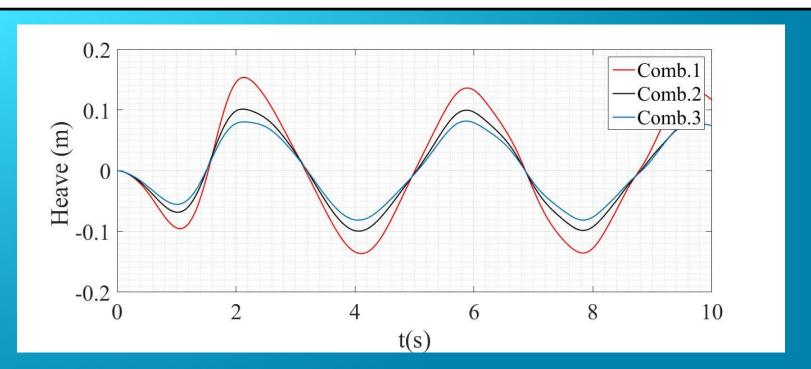
Negative Spring!

Springs in parallel!

 $k_{equivelent} = k_{buoyancy} - k_{pto}$

<u>Agua Harmonics</u>

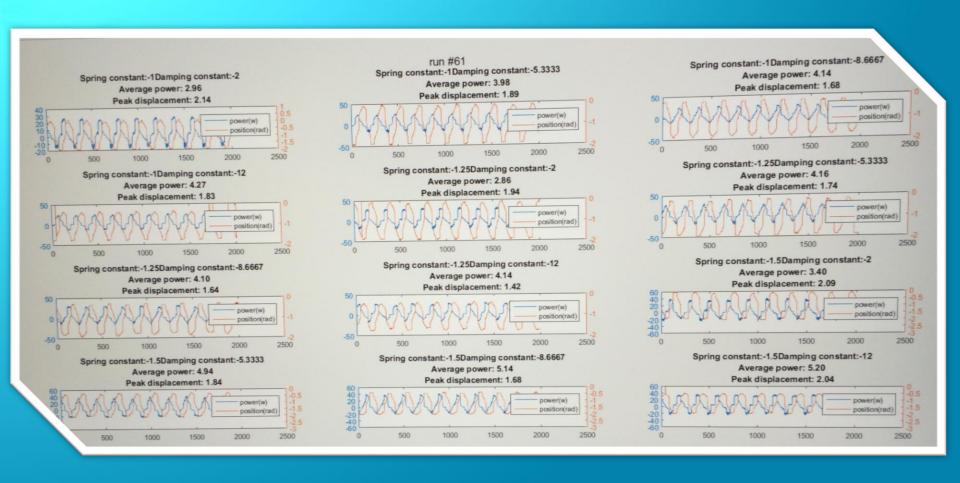

Clean.Simple.Energy.



<u> Agua Harmonics</u>

Clean.Simple.Energy.

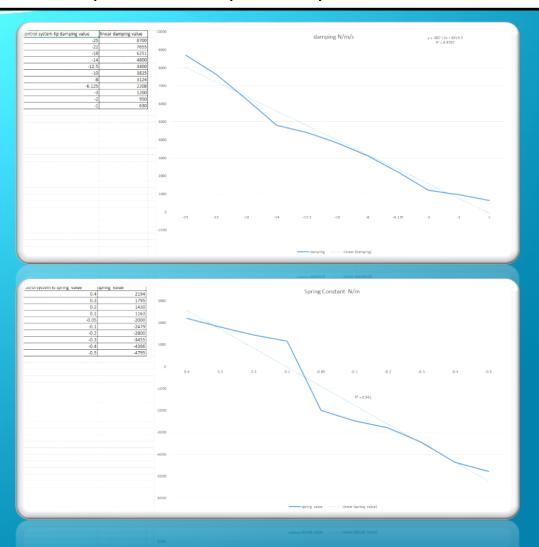
Simplifications, assumptions, procedures:


- Assume that regular wave performance is a proxy for irregular wave performance
- Started with only tuning spring rate to maximize displacement
- Once a negative spring parameter sweep gave the maximum displacement, then
 a parameter sweep for damping was conducted to determine maximum power
- Verification was conducted in irregular JONSWAP waves
- Parameter for negative spring and damp were selected based on optimal regular wave parameters for the same significant wave height and frequency

<u>Agua Harmonics</u>

Clean.Simple.Energy.

- Varied damping to maximize power
- Built a matrix of optimal parameters yielding max power in range of sea states



AcuaHarmonics

Clean.Simple.Energy.

~190 tests at OH Hinsdale Flume

- Determined range of spring and damping PTO is capable of
- Linear relationship between optimal Kp and Ki and wave frequency

AguaHarmonics

Clean.Simple.Energy.

RESULTS!

ACE: 7.6m/million\$

HPQ:7.4m/million\$

WINNING SCORE!